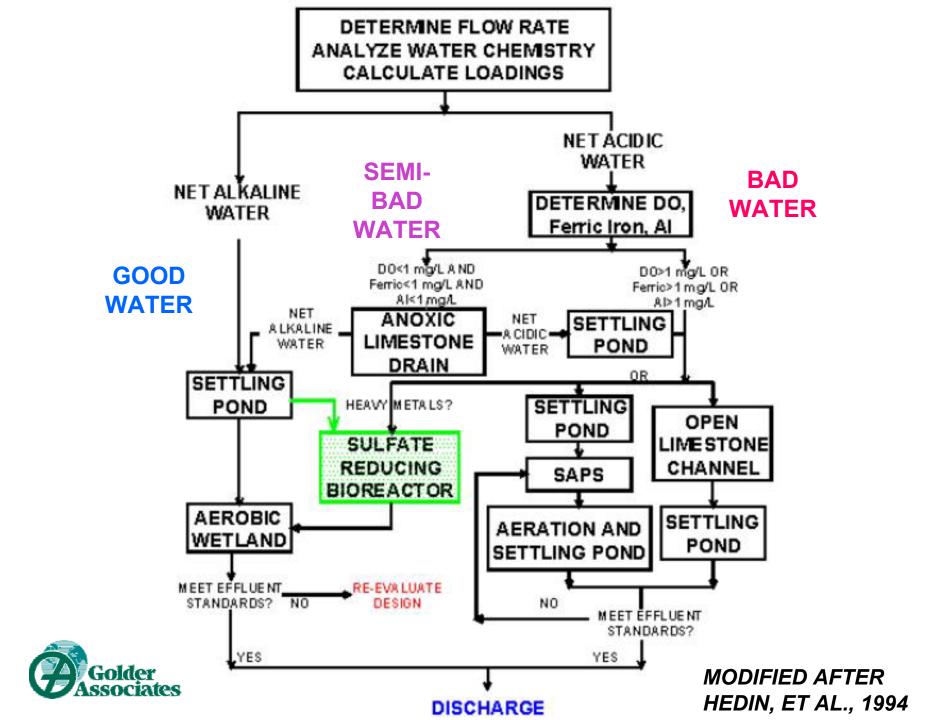
Selected Case Studies Applications of Sulfate Reducing Bioreactors in the Passive Treatment of Acid Mine/Rock Drainage

Jim Gusek Golder Associates Inc. Lakewood, CO jgusek@golder.com

Passive Treatment System Design Components

Biological Components


- Anaerobic SRBR's
- Aerobic Cells or Rock Filters
- Successive Alkalinity Producing Systems (SAPS)

Limestone Components

- Limestone Sand
- Anoxic Limestone
 Drains (ALD's)
- Alkaline Ponds
- Open Limestone
 Channels

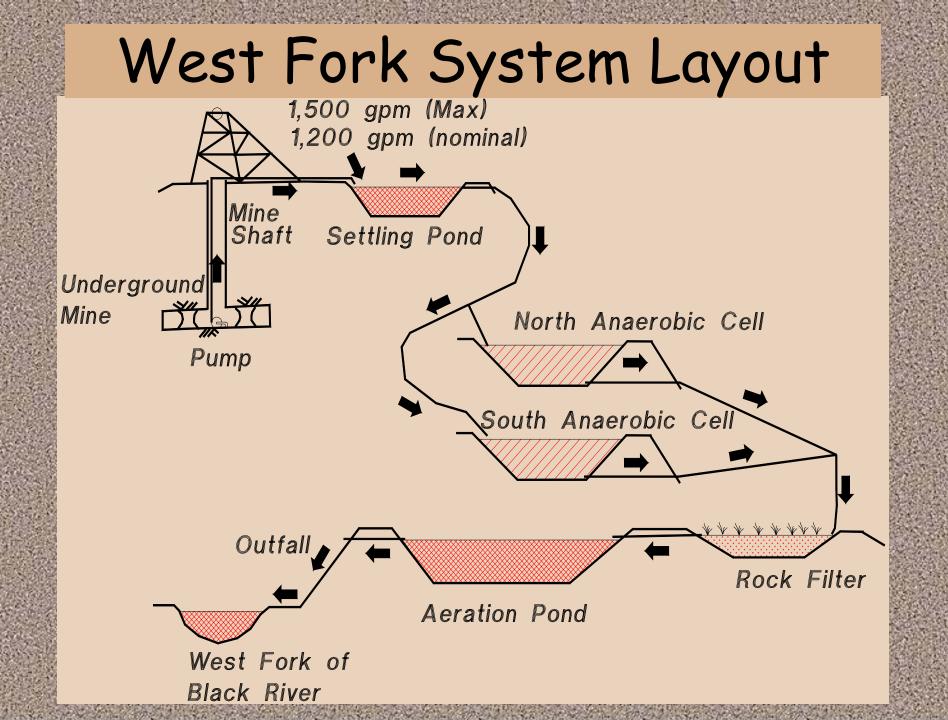
Settling Ponds & Flow Equalization Ponds, Fluid Conveyances (Pipes & Channels)

Large Scale, Demonstration, and Pilot Scale Systems

- West Fork, Missouri, USA (Large)
- Judy 14, Pennsylvania USA (Demo)
- Fran Mine, Pennsylvania USA (Pilot)
- Golinsky Mine, California USA (Pilot)
- Wheal Jane Mine, Cornwall, UK (Pilot)
- Haile Mine, South Carolina (Pilot→Full)
- Other Ongoing Bench & Pilot Testing

Full Scale Passive Treatment of Dissolved Lead at 1,200 gpm

5 acres, 1,200 gpm


Settling Pond

SRBR Cells

Aerobic Rock Filter Cell West Fork of Black River

Polishing Pond

> Constructed in 1996 for \$700,000

West Fork Bioreactor Key Components / Dimensions

- Settling Pond (0.75 acres)
- 2 Anaerobic (SRBR) Cells (0.5 ac each),
 6 ft deep, 40 mil HDPE liner substrate:
 - 67% sawdust, 19% limestone (low Mn),
 - 12% manure, 2% hay
- Aerobic Rock Filter 1.4 acres
- HDPE-lined Aeration Pond 2 acres
- Total cost with engineering: \$700,000

West Fork System Results

Influent Water pH - 7.8 s.u. Pb - 0.6 mg/L as aqueous lead carbonate complex Zn - 0.08 mg/L Sulfate ~180 mg/L SRBR Effluent Water pH - 7.8 s.u. (no change) Pb - 0.027 to 0.05 mg/L (meets NPDES standard) Zn - <0.05 mg/L Sulfate - <140 mg/L

1,200 gpm (2. 7 cfs), 24 hours/day, 7 days/week Constructed in 1996

Demo Scale SRBR Judy 14 Pennsylvania Coal Mine

Constructed with Pennsylvania Growing Greener Funds by the Blacklick Creek Watershed Association

Judy 14 Project Background

- Seepage from Abandoned Judy 14 underground coal mine (mined in 1950's)
- SAPS systems were not working
- Elevated aluminum caused plugging problems
- Experience from a pilot system @ 2.5 gpm on a similar water was good

Judy 14 Bioreactor Key Components / Dimensions

- Valved diversion pipe
- One SRBR Cell 2.5 ft deep, 14,000 sf bottom area, 1 ft compacted clay liner, substrate:
 - 50% wood chips, 30% limestone;
 - 10% manure, 10% hay
- Aerobic Rock Filter designed, but built undersized
- Total cost with engineering: \$158,000

Judy 14 SRBR Demo Results

Influent Water pH - 3.0 Fe - 45 mg/LAl - 33 mg/L Mn - 2.6 mg/LZn - 0.86 mg/LCu - 0.10 mg/LNi - 0.32 mg/L

SRBR Effluent Water pH - 6.6 Fe - 0.5 mg/LAl - 0.07 mg/L Mn - 2.3 mg/LZn - 0.06 mg/LCu - BDL @.0009 Ni - 0.002 mg/L

Flow: 10 gpm

Constructed in late 2002

See Also: www.kcstream.org/Blacklick/Blacklick 2004.htm – sample id's 433 (influent) and 442 (SRBR effluent)

Pilot Scale Anaerobic SRBR Fran Mine Site Pennsylvania Surface Coal Mine

The "worst acid drainage in Pennsylvania" – work sponsored by Allegheny Mtn Chapter of Trout Unlimited

Local Residents

Fran Mine Project Background

- Abandoned surface coal mine seepage
- Mined in 1970's, pit was backfilled
- Injection of fly ash grout helped control MIW but it was not enough
- Total flow of 42 gpm @ full scale impacts 5 miles of trout fishery
- Bench scale SRBR tests successful no plugging problems from aluminum precips
- Pilot system design and construction funded by private donations & govt grants

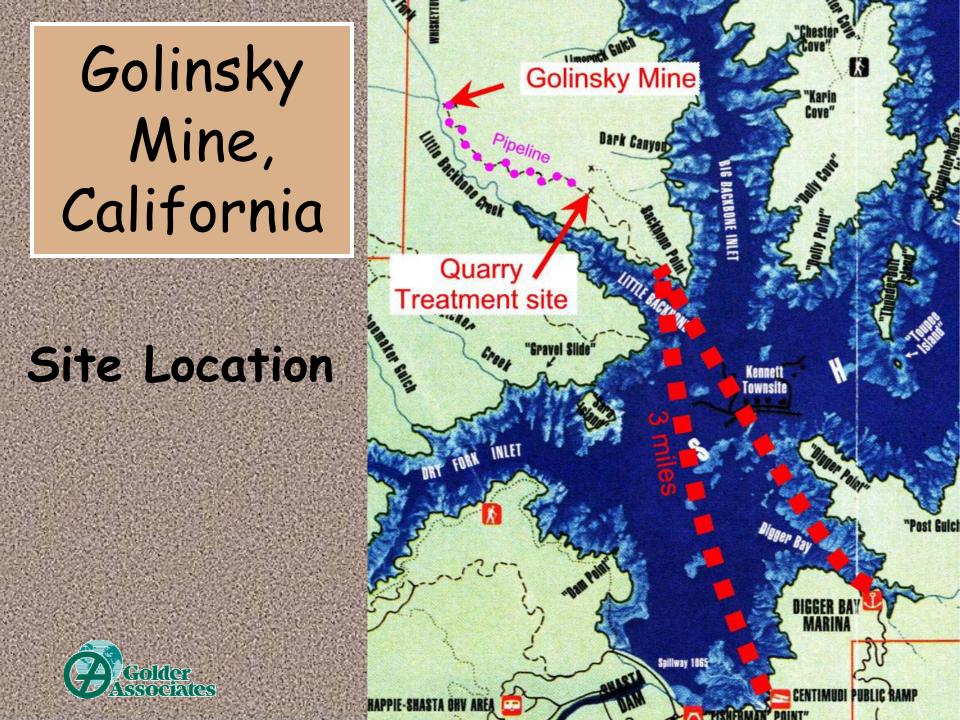
Fran Mine Bioreactor Key Components / Dimensions

- Valved diversion pipe (problematic)
- One SRBR Cell 3 ft deep (buried), 4,350 sf bottom area; 40 mil PVC liner, substrate:
 - 50% wood chips, 30% limestone;
 - 10% manure, 10% hay
- Aerobic Rock Filter designed, but not built; mini version added later.
- Total construction cost: \$42,400; engineering cost \$20,000

Pilot Scale Anaerobic SRBR Fran Mine Site

Soil Cover




Fran Mine Pilot SRBR Results

Influent Water pH - 2.4 Fe - 298 mg/L Al - 257 mg/L Mn - 25 mg/LCu - 0.56 mg/LZn - 2.0 mg/L Acidity - 2,734 mg/L Sulfate - 3,215

Effluent Water pH - 6.4 Fe - 64 (Fe⁺²=46) Al - <0.02 mg/L Mn - 26.4 mg/L Cu - BDL @0.0009 mg/L Zn - 0.127 mg/L Alkalinity - 1,038 mg/L Sulfate - 752 mg/L

Constructed in late 2002

Mine Adit Locations

Little Backbone Ck

Old Mill Site

Golinsky Mine

Lower Adit (ARD Source)

Project Phases

- Bench Test (Jan '04 to May '04)
- Pilot Scale Test (July '04 to June'06)
- Full Scale Pipeline (Fall, '04)
- Full Scale Design and Construction SRBR (in Future)

Bench Test Mobilization

Bench Test Results Summary

Influent Water pH - 3.0 Fe - 100 mg/L AI - 40 mg/L Mn - 1.2 mg/LZn - 55 mg/LCu - 22.6 mg/L Ni - 0.07 mg/L

Effluent Water pH - 6.0 Fe - 0.7 mg/LAI - 0.15 mg/L Mn - 1.4 mg/LZn - 0.2 mg/LCu - 0.0008 mg/L Ni - 0.01 mg/L

Flow: 8.5 liters (2.25 gallons) per day

PILOT CONSTRUCTION

- Sulfate Reducing Bioreactor
- 8,000 Ft Long Pipeline
- Most components are prefabricated

Pre-fab Pilot SRBR Construction

Perforated Pipes

Treated Water Collection Piping

Equipment Mobilization

Dropping Lake Levels

June 18, 2004

Pool El. 1,036'

Tree at "Beachhead"

EARLY MAY, 2004 Pool El. 1,044'

Substrate Mobilization

Off-loading Substrate

Off-loading Substrate

Off-loading Substrate

SRBR Construction

SRBR Incubating



Full Scale Pipeline Phase Pipe Delivery

Pipe Assembly & Welding

Golinsky Mine Pilot Bioreactor Key Components / Dimensions

- Valved diversion (off 6" pipeline)
- One SRBR Cell 2.5 ft deep, 1,024 sf bottom area, 18 mil HDPE PermalonTM liner, substrate:

40% co-gen fuel, 29% limestone, 1% ash, 10% rice hulls, 10% manure, 10% hay

- Aerobic Rock Filter not designed, but natural channel functioning as one.
- Total cost with engineering: ~\$350K

Pilot Test Results Final 2004 Sampling Event (Nov. 11th)

Influent Water pH - 3.0 Fe - 104 mg/LAl - 24.5 mg/L Mn - 1.3 mg/LZn - 54.9 mg/LCu - 9.0 mg/LNi - 0.031 mg/L Cd - 0.71 mg/L 504 - 797 mg/L

Effluent Water pH - 7.2 Fe - 0.8 mg/LAI - 0.06 mg/L Mn - 2.5 mg/L Zn - 0.1 mg/LCu - <0.003 mg/L Ni - 0.007mg/L Cd - 0.006 mg/L $SO_4 - 488 \text{ mg/L}$

Eff+1 Water pH - 7.2 Fe - 0.1 mg/LAl - 0.03 mg/L Mn - 0.03 mg/L Zn - 0.03 mg/LCu - 0.01 mg/LNi - 0.025 mg/L Cd - 0.006 mg/L SO₄ - 467 mg/L

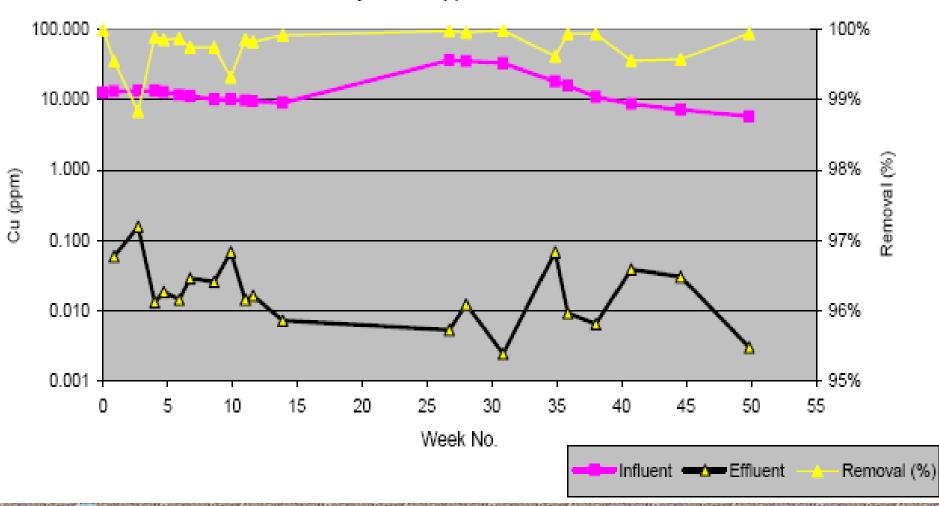
Flow: 1.0 gpm (DESIGN)

Pilot Test Results Early 2005 Sampling Event (Feb. 17th)

Influent Water pH - 2.6 Fe - 162 mg/L Al - 44.2 mg/L Mn - 0.85 mg/L Zn - 47.2 mg/LCu - 33.3 mg/LNi - 0.044 mg/L Cd - 0.47 mg/L 504 - 1104 mg/L

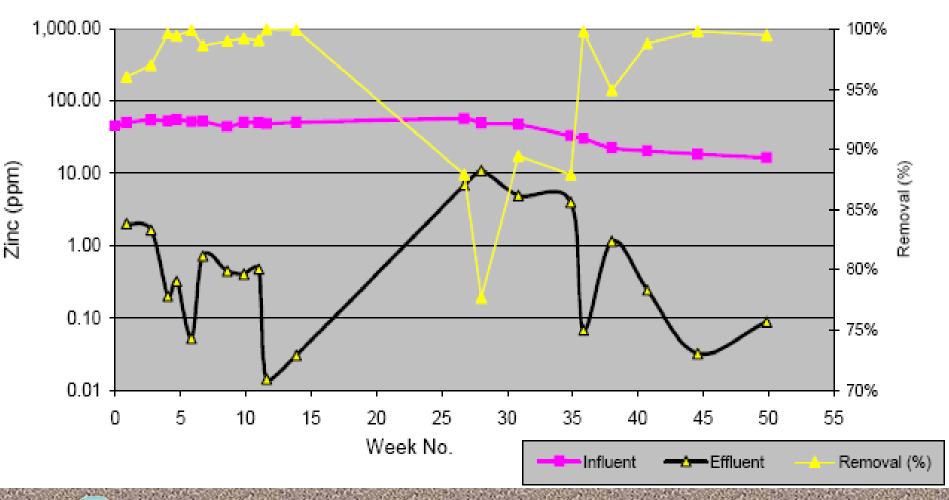
Effluent Water pH - 6.6 Fe - 22 mg/L Al - 0.035 mg/L Mn - 4.3 mg/LZn - 5.0 mg/LCu - <0.005 mg/L Ni - 0.008mg/L Cd - 0.005 mg/L $SO_4 - 1089 \text{ mg/L}$

Eff+1 Water pH - 7.5 Fe - 7.9 mg/L Al - <0.03 mg/L Mn - 4.1 mg/LZn - 2.5 mg/LCu - <0.005 mg/L Ni - 0.007 mg/L Cd - 0.004 mg/L $SO_4 - 1104 mg/L$


Flow: 2.0 gpm - OVERLOADED 3X

Pilot System Overload Recovery

Pilot System Overload Recovery


Golinsky Pilot Copper Removal

Pilot System Overload Recovery

Golinsky Pilot Zinc Removal

Pilot Scale Aerobic & SRB Wheal Jane Mine, Cornwall UK

Lime Dose System

Buried SRB

BOD & Mn Polishing

ALD

Aerobic Cells

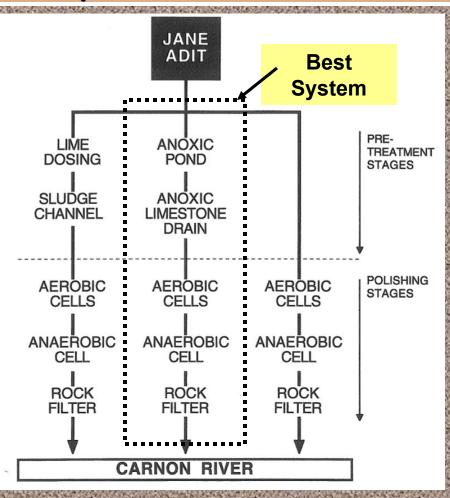
ALD System

Buried SRB

Aerobic Cells

BOD & Mn Polish

Lime


Dosing

Wheal Jane Project Background

- Abandoned underground tin mine closed in 1991; pumping stopped and the mine flooded
- Blowout event polluted nearby estuary in 1992
- Three parallel pilot passive systems built in 1995 to evaluate method to replace lime dosing
- Total flow of 4,755 gpm @ full scale
- Pilot test conclusion: not enough room to construct passive systems - lime dosing is preferred alternative.

Wheal Jane Pilot Tests Three Systems in Parallel

Wheal Jane Pilot (ALD System)

Influent

pH - 3.9 Fe - 110 As - 9 Al - 27 Mn - 8 Cu - 1.2 Zn - 80 ALD Effluent pH - 5.9 Fe - 100 As - 1 Al - 10 Mn - 8? Cu - n/a Zn - 65 Aerobic Effluent pH - 4 Fe - 10 As - 0.01 Al - 10 Mn - 8? Cu - n/a Zn - 65

SRBR Effluent pH - 6 Fe - 5 As - 0.1 Al - 3 Mn - 24 Cu - 0.1 Zn - 10 R. Filter Effluent pH - 7 Fe - n/a As - n/a Al - n/a Al - n/a Cu - n/a Zn - n/a

Flow: 2 to 4 gpm Constructed in 1995 Cost = over 1£ million (all 3 pilot systems)

Haile Mine, SC Full Scale (6 gpm)

- Three Sources commingled
- Commissioned in June, 2005
- Based on bench & pilot tests

Haile Mine Site Layout

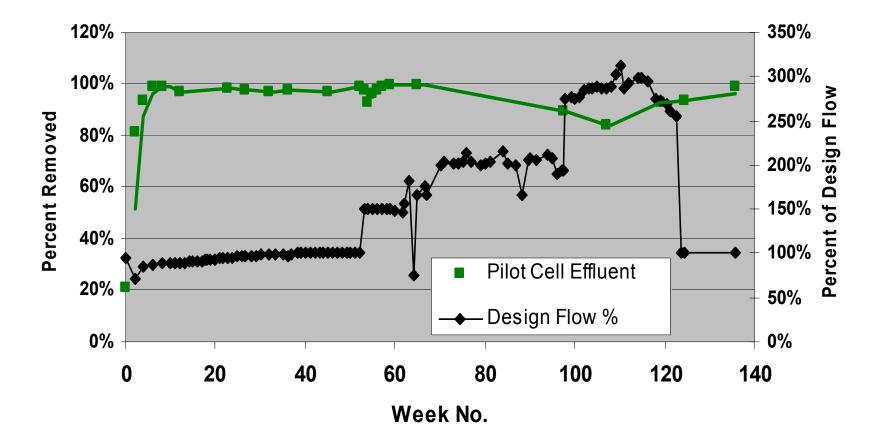
Backfilled Dase Hill Pit Chase Hill Pit Re-Capped WHIDPE

SRBI

Chase Hill Pad Re-Capped w/HDPE

Pilot SRBR Cell built in Barren Pond

South Pad


Mine Office

HAILE PILOT RESULTS

Combined Heavy Metals Removal & Design Flow Iron, Copper, Zinc, Aluminum, and Cadmium

One of Two Full Scale SRBR Cells Under Construction

Restand

Ongoing Studies

- Elizabeth Copper Mine, VT (bench)
 - South Open Cut (minor zinc, low pH)
 - Tailings Dam Seepage (mostly Fe w/other metals)
- Peerless Jenny King Mine, MT (Full)
- Luttrelle Repository, MT (Demo)

SOUTH OPEN CUT

Elizabeth Mine,VT

South Open Cut Bench Test Results 8/2/05

Analyte	Influent	SRBR-1	SRBR-2	SRBR-3	SRBR-4	
рН	3.75		7.16 7.04		6.76	
ORP	-168	-314	-328	-325	-301	
Flow liters/day		84	75	82	79	
AI	5.4	0.14	0.11	0.13	0.13	
Са	68	153	157	274	183	
Cd	0.0048	0.0036	0.0032	0.0037	0.0035	
Со	0.071	0.004 0.004		0.005	B.D.L.	
Fe	10.5	0.13	0.12	0.11	0.18	
Ni	Ni 0.068		B.D.L. B.D.L.		B.D.L.	
S	S 109		422	574	221	
Sulfate Calc'd	Ifate Calc'd 328		1,265	1,722	662	
Zn	Zn 0.93		0.41	0.47	0.43	

Flow: 80 liters (20 gallons) per day

Tailings Dam

Bench SRBRs

Elizabeth Mine, VT

Tailings Dam

Bench SRBRs Under Construction

Tailings Dam Bench Test Results (Preliminary) 8/2/05

Analyte (mg/L)	TD-1 Inf	SRBR-5	SRBR-6	SRBR-7	SRBR-8	
pН	6.22	6.52	6.43	5.77	6.05	
ORP (mv)	-27.2	-107	-124	-156	-104	
Flow Liters/day		4	4	4	4	
AI	0.19	0.19	0.08	0.15	0.02	
Са	332	373	372	488	376	
Cd	0.03	0.008	0.007	0.008	0.014	
Со	0.13	0.01	0.01	0.02	0.03	
Cr	0.004	0.005	B.D.L.	B.D.L.	B.D.L.	
Fe	702	60	6.7	80	332	
Ni	0.07	0.01	0.01	0.02	0.01	
S	726	216	157	237	451	
Sulfate Calc'd	2,178	647	471	712	1,352	
Zn	Zn 0.94		0.32	0.10	0.09	

Flow: 4 liters (1 gallon) per day

Luttrell Site, 10 Mile Creek, MT Demo Cell Construction

More Demo Cell Construction

- --- Fundam Hantachart

Completed Luttrell Demo Bioreactor May, 2003

24.53

4. 10 11

Luttrell Demo Results July 8, 2005

Analyte	LUTRL-INFL PIPE	LUTRL-EFFLUENT-		
pН	4.40	6.09		
ORP mv	265	-266		
AI (mg/L)	32	0.25		
Са	486	446		
Cd	1.24	0.0064		
Со	0.77	BDL		
Cu	12.7	0.009		
Fe	2.4	2.2		
Mn	171	56		
Ni	0.47	0.013		
S	900	296		
Sulfate Calc'd	2,699	887		
Zn	210	0.35		

Flow: ~1 gpm -1,440 gallons per day

Peerless Jenny-King, Montana

UPPER WETLAND ZONE

Peerless Jenny-King, Montana

LOWER MODIFIED SRBR ZONE

-

PJK Results July 18, 2005

Analyte	infi.	Leaving UWZ	Infl SRBR's	Mid- SRBRs	End SRBRs	UWZ- Well	SRBR1- Well	SRBR2 -Well	SRBR3 -Well
рН	6.75	7.07	7.17	7.15	7.21	7.15	7.25	6.92	6.93
ORP mv	-	250	237	178	200	-30	-66	-121	-42
Са	34	36	35	36	32	38	42	35	BDL
Cd	0.011	0.011	0.0045	0.0030	0.0061	0.0020	0.0014	BDL	BDL
Fe	0.33	0.4	0.0	0.1	0.1	3.7	0.8	0.3	BDL
Mn	4.6	4.7	1.9	1.5	0.3	15.6	2.7	1.5	BDL
S	31	31	30	31	26	20	3	19	BDL
Sulfate Calc'd	94	92	91	93	78	61	10	57	0.2
Zn	1.35	1.35	0.62	0.31	0.87	0.09	0.01	0.02	BDL

Flow: ~1 gpm -1,440 gallons per day

P.T. Advancements 1985 to 2005

- Established design protocol
 - Lab, bench, pilot studies
 - Physical and geochemical design parameters
- Wide range of operating conditions
 - pH 2.5 to 8.5
 - Metals (Fe, Cu, Pb, Zn, Cd, Cr, Mn, Hg, Mo, Al, Se, As, U, Co)
 - Non-metals (CN, SO4, NO3, NH3, BOD5, P)
 - Temperatures (0 to 30 deg C)
 - Flows up to 1,200 gpm

Data Needed to Get Started

- Flow rates Avg., Min., & Max.
- Chemistry of solution (s): pH, metals, sulfate, acidity/alkalinity
- With this info, we can develop an order of magnitude size of system in minutes.
- Acreage available for construction
- Discharge limits

Summary

- Passive components can be assembled in many variations which are driven by the AMD geochemistry (see design flow chart)
- Full scale systems are most successful when based on bench and pilot studies
- Passive treatment might not be feasible due to land availability (Wheal Jane)
- Some full scale systems have been operating for nearly a decade (West Fork)
- SRBRs are BIOLOGICAL systems overloading has consequences

